INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPT./CENTRE:	Electronic	s and Computer Engineerin
1. Subject Code: EC – 513N	Course Title:	Telecommunication Networks
2. Contact Hours:	L: 3	T: 0 P: 0
3. Examination Duration (Hrs.):	Theory 0	3 Practical 0 0
4. Relative Weight: CWS 15 PRS	OO MTE	35 ETE 50 PRE 00
5. Credits: 0 3 6. Semester	Autumn	√ Both

7. Pre-requisite: **EC – 311 / Background of probability and random variables.**

8. Subject Area: MSC

9. Objective: This course is designed to provide an in - depth study of communication networks with emphasis on development of analytical tools and quantitative performance evaluation.

10. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	Introduction to communication networks, network topologies,	3
	internetworking, circuit and packet switching; Layered architecture and	
	protocols, OSI reference model and functions of various layers,	
	overview of TCP / IP, ISDN and SS – 7 protocol architectures.	
2.	Brief characterization of communication channels and fundamental	3
	limits in digital transmission; Line codes and modems; Transmission	
	media and transmission impairments; Synchronous and asynchronous	
	time division multiplexing, SONET and SDH.	
3.	Error detection: Parity check, polynomial representation, cyclic	6
	redundancy checks and their capabilities; Error control: Stop and wait,	
	go - back n and selective repeat ARQ strategies, correctness and	
	throughput analysis; Framing and optimum frame size; HDLC and	
	LAPB protocols, throughput analysis of HDLC.	
4.	Introduction to queuing models, modeling of arrivals, interarrival times	15
	and service times, Poisson process; Little's theorem, proof and	
	examples; Continuous-time discrete event process and Markov chain,	
	Birth-Death process; Analysis and applications of M/M/1, M/M/m,	
	M/M/m/m, M/M/m/K and M/M/∞ queues; M/G/1 queue, vacation,	
	reservation, polling, and priority; G/G/1 queue; Network of queues,	

	Kleinrock's independence assumption, Burke's and Jackson's theorems.	
5.	Classification and performance measures of MAC protocols; Pure-	8
	ALOHA and slotted-ALOHA, Markov chain modeling, stability, BEB	
	and other stabilization techniques; Splitting algorithms; Non-persistent,	
	1-persistent and p-persistent CSMA, performance evaluation;	
	CSMA/CD and CSMA/CA; Polling, reservation and token ring	
	protocols; Overview of IEEE 802 standards and frame structures of	
	802.3 and 802.5.	
6.	Main issues in routing, virtual circuit and datagram routing;	4
	Classification of routing algorithms; Shortest path algorithms: Bellman-	
	Ford, Dijkstra and Floyd-Warshall; Distributed asynchronous Bellman-	
	Ford algorithm.	
7.	Objectives and means of flow and congestion control, End-to-end and	3
	node by node windows, performance analysis and simplified queuing	
	models; Rate control schemes: Time window, modeling and	
	performance of leaky bucket algorithm.	
	Total	42

11. Suggested Books:

Sl.	Name of Books / Authors	Year of
No.		Publication
1.	Bertsekas, D. and Gallager, R., "Data Networks", 2 nd Ed., Prentice-Hall	1992
	of India.	
2.	Kumar, A., Manjunath, D. and Kuri, J., "Communication Networking:	2004
	An Analytical Approach", Morgan Kaufmann.	
3.	Schwartz, M., "Telecommunication Networks: Protocols, Modeling and	1987
	Analysis", Pearson Education.	
4.	Stallings, W., "Data and Computer Communication", 8 th Ed., Pearson	2007
	Education.	
5.	Walrand, J., "Communication Networks", 2 nd Ed., McGraw-Hill.	2009
6.	Kleinrock, L., "Queuing Systems: Theory", 2 nd Ed., Wiley Blackwell.	2008